1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
import time
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import pairwise_distances_argmin
# 模拟测试数据
np.random.seed(0)
batch_size = 45
centers = np.array([[1, 1], [-1, -1], [1, -1]])
n_clusters = centers.shape[0]
X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=[0.3, 0.7, 1])
# 使用 K-means 聚类
k_means = KMeans(init='k-means++', n_clusters=3, n_init=10)
t0 = time.time()
k_means.fit(X)
t_batch = time.time() - t0
# 校验
k_means_cluster_centers = k_means.cluster_centers_
k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers)
# 绘图
fig = plt.figure(figsize=(8, 3))
fig.subplots_adjust(left=0.01, right=0.98, bottom=0.05, top=0.9)
colors = ["#4EACC5", "#FF9C34", "#4E9A06"]
ax = fig.add_subplot(1, 3, 1)
for k, col in zip(range(n_clusters), colors):
my_members = k_means_labels == k
cluster_center = k_means_cluster_centers[k]
ax.plot(X[my_members, 0], X[my_members, 1], "w", markerfacecolor=col, marker=".")
ax.plot(
cluster_center[0],
cluster_center[1],
"o",
markerfacecolor=col,
markeredgecolor="k",
markersize=6,
)
ax.set_title("KMeans")
ax.set_xticks(())
ax.set_yticks(())
# plt.text(-3.5, 1.8, "train time: %.2fs\ninertia: %f" % (t_batch, k_means.inertia_))
|